复杂的事件处理(CEP)是一组方法,可以使用复杂和高度描述性模式从大规模数据流中提取有效的知识。许多应用程序,例如在线金融,医疗保健监控和欺诈检测,使用CEP技术来实时捕获关键警报,潜在威胁或重要通知。截至今天,在许多领域,模式是由人类专家手动定义的。但是,所需的模式通常包含令人费解的关系,而人类很难检测到,并且在许多领域中,人类的专业知识都是稀缺的。我们提出了救赎主(基于加固的CEP模式矿工),这是一种新颖的增强和主动学习方法,旨在采矿CEP模式,允许在减少所需人类努力的同时提取知识的扩展。这种方法包括一种新颖的政策梯度方法,用于庞大的多元空间,以及一种结合强化和积极学习以进行CEP规则学习的新方法,同时最大程度地减少培训所需的标签数量。救赎主的目标是使CEP集成在以前无法使用的域中。据我们所知,救赎主是第一个提出事先观察到的新CEP规则的系统,并且是第一种旨在增加专家没有足够信息的领域模式知识的方法。我们对各种数据集的实验表明,救赎主能够扩展模式知识,同时超过了几种用于模式挖掘的最先进的强化学习方法。
translated by 谷歌翻译
我们表明,具有随机性访问的神经网络可以通过扩增胜过确定性网络。我们称此类网络融合的神经网络或CFNN。我们表明,CFNN可以将$ d $维球的指标近似于任意准确性,仅使用2层和$ \ Mathcal {o}(1)$ Neurrons,其中显示了2层确定性网络所需的$ \ \欧米茄(E^d)$神经元,指数改进(ARXIV:1610.09887 [CS.LG])。我们证明了一个高度不平凡的结果,即对于几乎任何分类问题,都存在一个简单的网络,可以解决该网络权重的足够强大的发电机。结合了这些结果,我们猜测,对于大多数分类问题,有一个CFNN可以比任何确定性网络更高的精度或更少的神经元解决。最后,我们使用CIFAR10和CIFAR100上的新型CFNN体系结构实验验证了我们的证明,从基线提高了9.25 \%。
translated by 谷歌翻译
The widely studied task of Natural Language Inference (NLI) requires a system to recognize whether one piece of text is textually entailed by another, i.e. whether the entirety of its meaning can be inferred from the other. In current NLI datasets and models, textual entailment relations are typically defined on the sentence- or paragraph-level. However, even a simple sentence often contains multiple propositions, i.e. distinct units of meaning conveyed by the sentence. As these propositions can carry different truth values in the context of a given premise, we argue for the need to recognize the textual entailment relation of each proposition in a sentence individually. We propose PropSegmEnt, a corpus of over 35K propositions annotated by expert human raters. Our dataset structure resembles the tasks of (1) segmenting sentences within a document to the set of propositions, and (2) classifying the entailment relation of each proposition with respect to a different yet topically-aligned document, i.e. documents describing the same event or entity. We establish strong baselines for the segmentation and entailment tasks. Through case studies on summary hallucination detection and document-level NLI, we demonstrate that our conceptual framework is potentially useful for understanding and explaining the compositionality of NLI labels.
translated by 谷歌翻译
A learned system uses machine learning (ML) internally to improve performance. We can expect such systems to be vulnerable to some adversarial-ML attacks. Often, the learned component is shared between mutually-distrusting users or processes, much like microarchitectural resources such as caches, potentially giving rise to highly-realistic attacker models. However, compared to attacks on other ML-based systems, attackers face a level of indirection as they cannot interact directly with the learned model. Additionally, the difference between the attack surface of learned and non-learned versions of the same system is often subtle. These factors obfuscate the de-facto risks that the incorporation of ML carries. We analyze the root causes of potentially-increased attack surface in learned systems and develop a framework for identifying vulnerabilities that stem from the use of ML. We apply our framework to a broad set of learned systems under active development. To empirically validate the many vulnerabilities surfaced by our framework, we choose 3 of them and implement and evaluate exploits against prominent learned-system instances. We show that the use of ML caused leakage of past queries in a database, enabled a poisoning attack that causes exponential memory blowup in an index structure and crashes it in seconds, and enabled index users to snoop on each others' key distributions by timing queries over their own keys. We find that adversarial ML is a universal threat against learned systems, point to open research gaps in our understanding of learned-systems security, and conclude by discussing mitigations, while noting that data leakage is inherent in systems whose learned component is shared between multiple parties.
translated by 谷歌翻译
Large language models (LLMs) have shown impressive results across a variety of tasks while requiring little or no direct supervision. Further, there is mounting evidence that LLMs may have potential in information-seeking scenarios. We believe the ability of an LLM to attribute the text that it generates is likely to be crucial for both system developers and users in this setting. We propose and study Attributed QA as a key first step in the development of attributed LLMs. We develop a reproducable evaluation framework for the task, using human annotations as a gold standard and a correlated automatic metric that we show is suitable for development settings. We describe and benchmark a broad set of architectures for the task. Our contributions give some concrete answers to two key questions (How to measure attribution?, and How well do current state-of-the-art methods perform on attribution?), and give some hints as to how to address a third key question (How to build LLMs with attribution?).
translated by 谷歌翻译
In this paper, we introduce a novel network that generates semantic, instance, and part segmentation using a shared encoder and effectively fuses them to achieve panoptic-part segmentation. Unifying these three segmentation problems allows for mutually improved and consistent representation learning. To fuse the predictions of all three heads efficiently, we introduce a parameter-free joint fusion module that dynamically balances the logits and fuses them to create panoptic-part segmentation. Our method is evaluated on the Cityscapes Panoptic Parts (CPP) and Pascal Panoptic Parts (PPP) datasets. For CPP, the PartPQ of our proposed model with joint fusion surpasses the previous state-of-the-art by 1.6 and 4.7 percentage points for all areas and segments with parts, respectively. On PPP, our joint fusion outperforms a model using the previous top-down merging strategy by 3.3 percentage points in PartPQ and 10.5 percentage points in PartPQ for partitionable classes.
translated by 谷歌翻译
Action recognition models have achieved impressive results by incorporating scene-level annotations, such as objects, their relations, 3D structure, and more. However, obtaining annotations of scene structure for videos requires a significant amount of effort to gather and annotate, making these methods expensive to train. In contrast, synthetic datasets generated by graphics engines provide powerful alternatives for generating scene-level annotations across multiple tasks. In this work, we propose an approach to leverage synthetic scene data for improving video understanding. We present a multi-task prompt learning approach for video transformers, where a shared video transformer backbone is enhanced by a small set of specialized parameters for each task. Specifically, we add a set of ``task prompts'', each corresponding to a different task, and let each prompt predict task-related annotations. This design allows the model to capture information shared among synthetic scene tasks as well as information shared between synthetic scene tasks and a real video downstream task throughout the entire network. We refer to this approach as ``Promptonomy'', since the prompts model a task-related structure. We propose the PromptonomyViT model (PViT), a video transformer that incorporates various types of scene-level information from synthetic data using the ``Promptonomy'' approach. PViT shows strong performance improvements on multiple video understanding tasks and datasets.
translated by 谷歌翻译
Object permanence is the concept that objects do not suddenly disappear in the physical world. Humans understand this concept at young ages and know that another person is still there, even though it is temporarily occluded. Neural networks currently often struggle with this challenge. Thus, we introduce explicit object permanence into two stage detection approaches drawing inspiration from particle filters. At the core, our detector uses the predictions of previous frames as additional proposals for the current one at inference time. Experiments confirm the feedback loop improving detection performance by a up to 10.3 mAP with little computational overhead. Our approach is suited to extend two-stage detectors for stabilized and reliable detections even under heavy occlusion. Additionally, the ability to apply our method without retraining an existing model promises wide application in real-world tasks.
translated by 谷歌翻译
政策梯度方法被广泛用于学习控制政策。它们可以轻松地分配给多名工人,并在许多领域中达到最新结果。不幸的是,它们表现出很大的差异,随后遭受了高样本的复杂性,因为它们在整个轨迹上汇总了梯度。在另一个极端情况下,计划方法,例如树木搜索,使用考虑未来LookAhead的单步过渡来优化策略。这些方法主要用于基于价值的算法。基于计划的算法需要一个正向模型,并且在每个步骤上都是计算密集型的,但更有效。在这项工作中,我们介绍了SoftTreemax,这是将树搜索整合到策略梯度中的第一种方法。传统上,针对单个状态行动对计算梯度。取而代之的是,我们基于树的策略结构在每个环境步骤中利用树叶的所有梯度。这使我们能够将梯度的差异减少三个数量级,并与标准策略梯度相比,从更好的样本复杂性中受益。在Atari上,与分布式PPO相比,SoftTreemax在运行时的表现高达5倍。
translated by 谷歌翻译
我们研究了在$ n $均质代理之间分配$ t $依次到达项目的问题,即每个代理必须收到所有项目的预先指定的分数,目的是最大化代理商的总估值,分配给他们的项目的总估值。假定代理在每轮中对该项目的估值为I.I.D。但是它们的分布是中央计划者未知的先验。因此,中央规划师需要从观察到的价值中隐含地学习这些分布,以便选择良好的分配策略。但是,这里的另一个挑战是,代理商是战略性的,并激励他们误导其估值,以便获得更好的分配。这使我们的工作与在线拍卖设计设置不同,这些设置通常假设已知的估值分布和/或涉及付款,也可以从不考虑战略代理的在线学习环境中进行付款。为此,我们的主要贡献是一种基于在线学习的分配机制,大约是贝叶斯激励兼容的,当所有代理人都是真实的时,与最佳离线分配政策相比,在所有代理商的效用中保证了sublinear的遗憾。
translated by 谷歌翻译